تخمین تابش کلی خورشید در استان کرمانشاه با استفاده از شبکه های عصبی مصنوعی

Authors

یاسر واثقیان

yasser vasseghian chemical engineering department, faculty of engineering, razi university, kermanshah, iranگروه مهندسی شیمی، دانشگاه رازی، کرمانشاه، ایران

abstract

هدف مطالعه حاضر توسعه یک مدل شبکه عصبی مصنوعی (ann) بر اساس روش رگرسیون غیرخطی چندگانه (mnlr) برای تخمین میانگین ماهانه مجموع روزانه تابش کلی خورشید در هر محل از استان کرمانشاه است. برای این منظور، داده های هواشناسی 23 ایستگاه در استان کرمانشاه در طول سالهای 1392- 1387 جمع آوری شد که از این بین، داده های 17 ایستگاه برای آموزش و 6 ایستگاه برای تست شبکه استفاده شد. در مرحله اول، همه متغیرهای مستقل (عرض جغرافیایی، طول جغرافیایی، ارتفاع، ماه، حداقل درجه حرارت ماهانه در جو، حداکثر درجه حرارت در جو، متوسط درجه حرارت در جو، دمای خاک، رطوبت نسبی، سرعت باد، بارش، فشار اتمسفریک، فشار بخار، کدورت و مدت زمان تابش آفتاب) جمع آوری و به مدل رگرسیون وارد شدند. سپس، از روش گام به گام mnlr برای تعیین مناسب ترین متغیرهای ورودی استفاده شد. با استفاده از این متغیرهای ورودی، نتایج به دست آمده توسط مدل ann با داده های واقعی مقایسه شد، و میانگین درصد خطا مطلق (mape) در حدود 98/3 درصد و ضریب همبستگی (r) در حدود 9961/0 برای مجموعه داده های تست به دست آمد که نشان دهنده معتبر بودن مدل است.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

تخمین تابش کلی خورشید در استان کرمانشاه با استفاده از شبکه‌های عصبی مصنوعی

هدف مطالعه حاضر توسعه یک مدل شبکه عصبی مصنوعی (ANN) بر اساس روش رگرسیون غیرخطی چندگانه (MNLR) برای تخمین میانگین ماهانه مجموع روزانه تابش کلی خورشید در هر محل از استان کرمانشاه است. برای این منظور، داده‌های هواشناسی 23 ایستگاه در استان کرمانشاه در طول سالهای 1392- 1387 جمع‌آوری شد که از این بین، داده‌های 17 ایستگاه برای آموزش و 6 ایستگاه برای تست شبکه استفاده شد. در مرحله اول، همه متغیرهای مستق...

full text

تخمین انرژی شکست بتن با استفاده از شبکه عصبی مصنوعی

بتن یکی از رایج‏ترین مصالح صنعتی و ساختمانی است که به دلیل اقتصادی بودن اهمیت روز افزونی پیدا می‏کند. در سال‏های اخیر با بهره‏گیری از روش‏های مختلف آزمایشگاهی، پارامتر‏های شکست مواد سیمانی مانند بتن مورد بررسی قرار گرفته است؛ نقش این پارامتر‏ها در طراحی سازه‏های سطحی و زیر‏سطحی از اهمیت ویژه‏ای برخوردار است. در این مقاله مدل شکست بر ‏اساس شبکه عصبی برای تخمین پارامترشکست بتن  GF(انرژی مخصوص شکس...

full text

تخمین سختی برشی شکست ( ) با استفاده از شبکه عصبی مصنوعی

    در سال‌های اخیر با بهره‌گیری از روش‌های مختلف آزمایشگاهی، چگونگی مد برشی شکست با استفاده از نمونه‌های سنگی مورد بررسی قرار گرفته است. اغلب گسیختگی‌های رخ داده در طبیعت در اثر عملکرد نیروهای کششی و برشی در توده سنگ می‌باشد. تعیین دقیق سختی برشی شکست برای درک و تحلیل رفتار گسیختگی‌ها در حفریات سطحی و زیرزمینی از اهمیت ویژه‌ای برخوردار می‌باشد. بررسی جامع دستاوردهای علمی‌در خصوص تعیین سختی برش...

full text

تخمین کریپ کمپلینس مخلوط های آسفالتی با استفاده از شبکه های عصبی مصنوعی

یکی از آزمایش‌های اساسی در فرایند طراحی روسازی‌های انعطاف‌پذیر به روش مکانیستیک- تجربی در آشتو 2002، آزمایش کریپ کمپلینس است. در این تحقیق مدلی جدید برای تخمین کریپ کمپلینس مخلوط‌های آسفالتی با استفاده از شبکه‌های عصبی مصنوعی پرسپترون چند لایه، با تکنیک آموزش لونبرگ- مارکوات، با توان تعمیم پذیریR=0.949 ، با موفقیت ارائه شده است. این مدل 14 ورودی شامل درصدهای عبوری انتخابی از منحنی دانه‌بندی ...

full text

بررسی پتانسیل اراضی استان کرمانشاه جهت کشت گندم دیم با استفاده از شبکه عصبی مصنوعی

با افزایش روزافزون جمعیت و نیاز به مواد غذایی، گندم به­عنوان محصولی با بیشترین سطح زیر کشت و تولید سالانه در مقیاس جهانی از اهمیت ویژه‌ای برخوردار بوده است لذا شناسایی و معرفی مناطق مساعد کشت آن در هر منطقه ضروری است. استان کرمانشاه به‌عنوان محدوده مورد مطالعه یکی از مناطق حاصلخیزی است که بیشترین کشت گندم را در بین محصولات زراعی دارد. بدین منظور در این مطالعه از شبکه عصبی پرسپترون چندلایه (MLP)...

full text

My Resources

Save resource for easier access later


Journal title:
انرژی ایران

جلد ۱۹، شماره ۱، صفحات ۰-۰

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023